Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
On a computer, one can often avoid explicitly transposing a matrix in memory by simply accessing the same data in a different order. For example, software libraries for linear algebra, such as BLAS, typically provide options to specify that certain matrices are to be interpreted in transposed order to avoid data movement.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions or, more efficiently, by removing the dimensions attribute of a matrix A with dim(A) <- NULL.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
For example, in the Pascal programming language, the declaration type MyTable = array [1.. 4, 1.. 2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.
The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).