Ad
related to: what is divergence in electromagnetism law of mass reading and thinking
Search results
Results From The WOW.Com Content Network
A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
If magnetic monopoles were to be discovered, then Gauss's law for magnetism would state the divergence of B would be proportional to the magnetic charge density ρ m, analogous to Gauss's law for electric field. For zero net magnetic charge density (ρ m = 0), the original form of Gauss's magnetism law is the result.
By the divergence theorem, Gauss's law for the field P can be stated in differential form as: =, where ∇ · P is the divergence of the field P through a given surface containing the bound charge density .
Painting of Hendrik Lorentz by Menso Kamerlingh Onnes, 1916 Portrait by Jan Veth Lorentz' theory of electrons. Formulas for the Lorentz force (I) and the Maxwell equations for the divergence of the electrical field E (II) and the magnetic field B (III), La théorie electromagnétique de Maxwell et son application aux corps mouvants, 1892, p. 451.
The laws and mathematical objects in classical electromagnetism can be written in a form which is manifestly covariant. Here, this is only done so for vacuum (or for the microscopic Maxwell equations, not using macroscopic descriptions of materials such as electric permittivity ), and uses SI units .
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.