Search results
Results From The WOW.Com Content Network
Coordination isomerism is a form of structural isomerism in which the composition of the coordination complex ion varies. In a coordination isomer the total ratio of ligand to metal remains the same, but the ligands attached to a specific metal ion change.
Cisplatin, PtCl 2 (NH 3) 2, is a coordination complex of platinum(II) with two chloride and two ammonia ligands.It is one of the most successful anticancer drugs. A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands ...
Six isomers of bipyridine exist, but two are prominent. 2,2′-bipyridine , also known as bipyridyl, dipyridyl, and dipyridine, is a popular ligand in coordination chemistry [ 2 ] [ 3 ] 2,2′-Bipyridine
Compared to the first coordination sphere, the second coordination sphere has a less direct influence on the reactivity and chemical properties of the metal complex. Nonetheless the second coordination sphere is relevant to understanding reactions of the metal complex, including the mechanisms of ligand exchange and catalysis.
In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element – but distinct arrangements of atoms in space. [1] Isomerism refers to the existence or possibility of isomers. Isomers do not necessarily share similar chemical or physical properties.
In coordination chemistry, a ligand [a] is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs , often through Lewis bases . [ 1 ]
In coordination chemistry, ligand isomerism is a type of structural isomerism in coordination complexes which arises from the presence of ligands which can adopt different isomeric forms. 1,2-Diaminopropane and 1,3-Diaminopropane are the examples that each feature a different isomer would be ligand isomers.
In contrast to the definition of ligand in metalorganic and inorganic chemistry, in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin. In general, the interpretation of ligand is contextual with regards to what sort of binding has been observed.