When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fiber product of schemes - Wikipedia

    en.wikipedia.org/wiki/Fiber_product_of_schemes

    Then there is a morphism Spec(k(y)) → Y with image y, where k(y) is the residue field of y. The fiber of f over y is defined as the fiber product X × Y Spec(k(y)); this is a scheme over the field k(y). [3] This concept helps to justify the rough idea of a morphism of schemes X → Y as a family of schemes parametrized by Y.

  3. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function between topological spaces is called monotone if every fiber is a connected subspace of its domain. A function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } is monotone in this topological sense if and only if it is non-increasing or non-decreasing , which is the usual meaning of " monotone function " in real analysis .

  4. Scheme (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scheme_(mathematics)

    The fiber product of schemes always exists. That is, for any schemes X and Z with morphisms to a scheme Y, the categorical fiber product exists in the category of schemes. If X and Z are schemes over a field k, their fiber product over Spec(k) may be called the product X × Z in the category of k-schemes.

  5. Fibred category - Wikipedia

    en.wikipedia.org/wiki/Fibred_category

    If is a morphism of , then those morphisms of that project to are called -morphisms, and the set of -morphisms between objects and in is denoted by (,). A morphism m : x → y {\displaystyle m:x\to y} in F {\displaystyle F} is called ϕ {\displaystyle \phi } -cartesian (or simply cartesian ) if it satisfies the following condition:

  6. Morphism - Wikipedia

    en.wikipedia.org/wiki/Morphism

    Therefore, the source and the target of a morphism are often called domain and codomain respectively. Morphisms are equipped with a partial binary operation, called composition. The composition of two morphisms f and g is defined precisely when the target of f is the source of g, and is denoted g ∘ f (or sometimes simply gf). The source of g ...

  7. Category theory - Wikipedia

    en.wikipedia.org/wiki/Category_theory

    A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the source and the target of the morphism. Metaphorically, a morphism is an arrow that maps its source to its target. Morphisms can be composed if the target of the first morphism equals the source of the second one.

  8. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Castelnuovo's theorem implies that to construct a minimal model for a smooth surface, we simply contract all the −1-curves on the surface, and the resulting variety Y is either a (unique) minimal model with K nef, or a ruled surface (which is the same as a 2-dimensional Fano fiber space, and is either a projective plane or a ruled surface ...

  9. Fibration - Wikipedia

    en.wikipedia.org/wiki/Fibration

    A mapping : between total spaces of two fibrations : and : with the same base space is a fibration homomorphism if the following diagram commutes: . The mapping is a fiber homotopy equivalence if in addition a fibration homomorphism : exists, such that the mappings and are homotopic, by fibration homomorphisms, to the identities and . [2]: 405-406