Ads
related to: approximation and errors exercise practice problems with solutions freeeducation.com has been visited by 100K+ users in the past month
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Math Worksheets
Addition, subtraction, division,
multiplication, fractions, & more.
- Printable Workbooks
Search results
Results From The WOW.Com Content Network
Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)
Suppose we have a continuous differential equation ′ = (,), =, and we wish to compute an approximation of the true solution () at discrete time steps ,, …,.For simplicity, assume the time steps are equally spaced:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is
There exist inputs to the travelling salesman problem that cause the Christofides algorithm to find a solution whose approximation ratio is arbitrarily close to 3/2. One such class of inputs are formed by a path of n vertices, with the path edges having weight 1 , together with a set of edges connecting vertices two steps apart in the path with ...
A Fermi problem (or Fermi question, Fermi quiz), also known as an order-of-magnitude problem, is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations. Fermi problems are usually back-of-the-envelope calculations.
In numerical analysis, catastrophic cancellation [1] [2] is the phenomenon that subtracting good approximations to two nearby numbers may yield a very bad approximation to the difference of the original numbers.
NP-hard problems vary greatly in their approximability; some, such as the knapsack problem, can be approximated within a multiplicative factor +, for any fixed >, and therefore produce solutions arbitrarily close to the optimum (such a family of approximation algorithms is called a polynomial-time approximation scheme or PTAS).