When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    is used. This well-known method was published by the German mathematician Wilhelm Kutta in 1901, after Karl Heun had found a three-step one-step method of order 3 a year earlier. [19] The construction of explicit methods of even higher order with the smallest possible number of steps is a mathematically quite demanding problem.

  3. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 1 ⋅ 1 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.

  4. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  5. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula states that, for any real number x, one has = ⁡ + ⁡, where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").

  7. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations , where it represents a signal that switches on at a specified time and stays switched on indefinitely.

  8. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    In numerical analysis and scientific computing, the backward Euler method (or implicit Euler method) is one of the most basic numerical methods for the solution of ordinary differential equations. It is similar to the (standard) Euler method , but differs in that it is an implicit method .

  9. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    The ERF method of finding a particular solution of a non-homogeneous differential equation is applicable if the non-homogeneous equation is or could be transformed to form () = + + +; where , are real or complex numbers and () is homogeneous linear differential equation of any order. Then, the exponential response formula can be applied to each ...