When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  3. Pre-exponential factor - Wikipedia

    en.wikipedia.org/wiki/Pre-exponential_factor

    In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential ...

  4. Aquilanti–Mundim deformed Arrhenius model - Wikipedia

    en.wikipedia.org/wiki/Aquilanti–Mundim_Deformed...

    Svante Arrhenius (1889) equation is often used to characterize the effect of temperature on the rates of chemical reactions. [1] The Arrhenius formula gave a simple and powerful law, which in a vast generality of cases describes the dependence on absolute temperature of the rate constant as following,

  5. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    The kinetic theory of gases allows accurate calculation of the temperature-variation of gaseous viscosity. The theoretical basis of the kinetic theory is given by the Boltzmann equation and Chapman–Enskog theory, which allow accurate statistical modeling of molecular trajectories.

  6. Entropy of activation - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_activation

    Entropy of activation determines the preexponential factor A of the Arrhenius equation for temperature dependence of reaction rates. The relationship depends on the molecularity of the reaction: for reactions in solution and unimolecular gas reactions A = (ek B T/h) exp(ΔS ‡ /R),

  7. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    However, the Arrhenius equation was derived from experimental data and models the macroscopic rate using only two parameters, irrespective of the number of transition states in a mechanism. In contrast, activation parameters can be found for every transition state of a multistep mechanism, at least in principle.

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Radical clock - Wikipedia

    en.wikipedia.org/wiki/Radical_clock

    [3] [4] The Arrhenius equation can then be applied to calculate the rate constant for a specific temperature at which the radical clock reactions are conducted. When using a radical clock to study a reaction, there is an implicit assumption that the rearrangement rate of the radical clock is the same as when the rate of that rearrangement ...