When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Packing density - Wikipedia

    en.wikipedia.org/wiki/Packing_density

    The optimal packing density or packing constant associated with a supply collection is the supremum of upper densities obtained by packings that are subcollections of the supply collection. If the supply collection consists of convex bodies of bounded diameter, there exists a packing whose packing density is equal to the packing constant, and ...

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing identical rectangles in a rectangle: The problem of packing multiple instances of a single rectangle of size (l,w), allowing for 90° rotation, in a bigger rectangle of size (L,W) has some applications such as loading of boxes on pallets and, specifically, woodpulp stowage. For example, it is possible to pack 147 rectangles of size (137 ...

  4. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    The strictly jammed (mechanically stable even as a finite system) regular sphere packing with the lowest known density is a diluted ("tunneled") fcc crystal with a density of only π √ 2 /9 ≈ 0.49365. [6] The loosest known regular jammed packing has a density of approximately 0.0555. [7]

  5. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.

  6. List of shapes with known packing constant - Wikipedia

    en.wikipedia.org/wiki/List_of_shapes_with_known...

    The packing constant of a geometric body is the largest average density achieved by packing arrangements of congruent copies of the body. For most bodies the value of the packing constant is unknown. [1] The following is a list of bodies in Euclidean spaces whose packing constant is known. [1]

  7. Ellipsoid packing - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_packing

    In geometry, ellipsoid packing is the problem of arranging identical ellipsoid throughout three-dimensional space to fill the maximum possible fraction of space. The currently densest known packing structure for ellipsoid has two candidates, a simple monoclinic crystal with two ellipsoids of different orientations [1] and a square-triangle crystal containing 24 ellipsoids [2] in the ...

  8. Tetrahedron packing - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron_packing

    They also reported a glassy, disordered packing at densities exceeding 78%. For a periodic approximant to a quasicrystal with an 82-tetrahedron unit cell, they obtained a packing density as high as 85.03%. [12] In late 2009, a new, much simpler family of packings with a packing fraction of 85.47% was discovered by Kallus, Elser, and Gravel. [13]

  9. Finite sphere packing - Wikipedia

    en.wikipedia.org/wiki/Finite_sphere_packing

    The higher the packing density, the less empty space there is in the packing and thus the smaller the volume of the hull (in comparison to other packings with the same number and size of spheres). To pack the spheres efficiently, it might be asked which packing has the highest possible density.