Search results
Results From The WOW.Com Content Network
Even without mechanisms to refer to the current function or calling function, anonymous recursion is possible in a language that allows functions as arguments. This is done by adding another parameter to the basic recursive function and using this parameter as the function for the recursive call.
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion ...
In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) [1]: p.26 is a higher-order function (i.e. a function which takes a function as argument) that returns some fixed point (a value that is mapped to itself) of its argument function, if one exists.
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
In this case the tree function calls the forest function by single recursion, but the forest function calls the tree function by multiple recursion. Using the Standard ML datatype above, the size of a tree (number of nodes) can be computed via the following mutually recursive functions: [5]
The values V i at earlier times i = n −1, n − 2, ..., 2, 1 can be found by working backwards, using a recursive relationship called the Bellman equation. For i = 2, ..., n , V i −1 at any state y is calculated from V i by maximizing a simple function (usually the sum) of the gain from a decision at time i − 1 and the function V i at the ...
Informally, and using programming language jargon, a tree (xy) can be thought of as a function x applied to an argument y. When evaluated (i.e., when the function is "applied" to the argument), the tree "returns a value", i.e., transforms into another tree. The "function", "argument" and the "value" are either combinators or binary trees.
Roberts (p. 171) gives a related example in Java, using a Class to represent a stack frame. The example given is a solution to the Tower of Hanoi problem wherein a stack simulates polymorphic recursion with a beginning, temporary and ending nested stack substitution structure.