When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Precession - Wikipedia

    en.wikipedia.org/wiki/Precession

    Torque-induced precession (gyroscopic precession) is the phenomenon in which the axis of a spinning object (e.g., a gyroscope) describes a cone in space when an external torque is applied to it. The phenomenon is commonly seen in a spinning toy top , but all rotating objects can undergo precession.

  3. Larmor precession - Wikipedia

    en.wikipedia.org/wiki/Larmor_precession

    Larmor precession is important in nuclear magnetic resonance, magnetic resonance imaging, electron paramagnetic resonance, muon spin resonance, and neutron spin echo. It is also important for the alignment of cosmic dust grains, which is a cause of the polarization of starlight.

  4. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    Transit of Mercury on November 8, 2006 with sunspots #921, 922, and 923 The perihelion precession of Mercury. Under Newtonian physics, an object in an (isolated) two-body system, consisting of the object orbiting a spherical mass, would trace out an ellipse with the center of mass of the system at a focus of the ellipse.

  5. Relativistic Precession - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Precession

    The special and general theories of relativity give three types of corrections to the Newtonian precession, of a gyroscope near a large mass such as the earth. They are: They are: Thomas precession a special relativistic correction accounting for the observer being in a rotating non-inertial frame.

  6. Geodetic effect - Wikipedia

    en.wikipedia.org/wiki/Geodetic_effect

    The difference between de Sitter precession and Lense–Thirring precession (frame dragging) is that the de Sitter effect is due simply to the presence of a central mass, whereas Lense–Thirring precession is due to the rotation of the central mass. The total precession is calculated by combining the de Sitter precession with the Lense ...

  7. Nodal precession - Wikipedia

    en.wikipedia.org/wiki/Nodal_precession

    Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field .

  8. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    For Mercury, the perihelion precession rate due to general relativistic effects is 43″ per century. By comparison, the precession due to perturbations from the other planets in the Solar System is 532″ per century, whereas the oblateness of the Sun (quadrupole moment) causes a negligible contribution of 0.025″ per century. [10] [11]

  9. Frame-dragging - Wikipedia

    en.wikipedia.org/wiki/Frame-dragging

    Static mass increase is a third effect noted by Einstein in the same paper. [6] The effect is an increase in inertia of a body when other masses are placed nearby. While not strictly a frame dragging effect (the term frame dragging is not used by Einstein), it is demonstrated by Einstein that it derives from the same equation of general relativity.