Search results
Results From The WOW.Com Content Network
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
An orthocomplemented lattice is complemented. (def) 8. A complemented lattice is bounded. (def) 9. An algebraic lattice is complete. (def) 10. A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A ...
In particular, a bounded-lattice homomorphism (usually called just "lattice homomorphism") between two bounded lattices and should also have the following property: =, =. In the order-theoretic formulation, these conditions just state that a homomorphism of lattices is a function preserving binary meets and joins.
Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a p-algebra.
Bounded lattice: a lattice with a greatest element and least element. Complemented lattice: a bounded lattice with a unary operation, complementation, denoted by postfix ⊥. The join of an element with its complement is the greatest element, and the meet of the two elements is the least element.
Every interval of a geometric lattice (the subset of the lattice between given lower and upper bound elements) is itself geometric; taking an interval of a geometric lattice corresponds to forming a minor of the associated matroid. Geometric lattices are complemented, and because of the interval property they are also relatively complemented. [7]
The complete subgroup lattice for D4, the dihedral group of the square. This is an example of a complete lattice. In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum ().
The dual notion, the empty lower bound, is the greatest element, top, or unit (1). Posets that have a bottom are sometimes called pointed, while posets with a top are called unital or topped. An order that has both a least and a greatest element is bounded. However, this should not be confused with the notion of bounded completeness given below.