When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    An important subclass of special-purpose factoring algorithms is the Category 1 or First Category algorithms, whose running time depends on the size of smallest prime factor. Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors. [ 10 ]

  4. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  5. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case. While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step [ 8 ] and stated for the first time the fundamental theorem of arithmetic.

  7. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    As far as is known, this is not possible using classical (non-quantum) computers; no classical algorithm is known that can factor integers in polynomial time. However, Shor's algorithm shows that factoring integers is efficient on an ideal quantum computer, so it may be feasible to defeat RSA by constructing a large quantum computer.

  8. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Most rings familiar from elementary mathematics are UFDs: All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the integers (also see Fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs. If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R.

  9. Williams's p + 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Williams's_p_+_1_algorithm

    At this point gcd(91645-2,112729) = 811, so 811 is a non-trivial factor of 112729. Notice that p−1 = 810 = 2 × 5 × 3 4. The number 9! is the lowest factorial which is multiple of 810, so the proper factor 811 is found in this step. The factor 139 is not found this time because p−1 = 138 = 2 × 3 × 23 which is not a divisor of 9!