Search results
Results From The WOW.Com Content Network
The key result states that the capacity of the channel, as defined above, is given by the maximum of the mutual information between the input and output of the channel, where the maximization is with respect to the input distribution.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate. The use of decimal prefixes is standard in data communications.
In October 2016, Huawei announced that it had achieved 27 Gbit/s in 5G field trial tests using polar codes for channel coding. The improvements have been introduced so that the channel performance has now almost closed the gap to the Shannon limit, which sets the bar for the maximum rate for a given bandwidth and a given noise level. [4]
What is the channel capacity for a signal having a 1 MHz bandwidth, received with a SNR of −30 dB ? That means a signal deeply buried in noise. −30 dB means a S/N = 10 −3. It leads to a maximal rate of information of 10 6 log 2 (1 + 10 −3) = 1443 bit/s. These values are typical of the received ranging signals of the GPS, where the ...
The first 4680 data bits are repeated 13 times (used in 13 parity codes), while the remaining data bits are used in 3 parity codes (irregular LDPC code). For comparison, classic turbo codes typically use two constituent codes configured in parallel, each of which encodes the entire input block (K) of data bits.
Graph showing the proportion of a channel’s capacity (y-axis) that can be used for payload based on how noisy the channel is (probability of bit flips; x-axis). The channel capacity of the binary symmetric channel, in bits , is: [ 2 ]
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.