Search results
Results From The WOW.Com Content Network
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
When the task is to find the solution that is the best under some criterion, this is an optimization problem. Solving an optimization problem is generally not referred to as "equation solving", as, generally, solving methods start from a particular solution for finding a better solution, and repeating the process until finding eventually the ...
Problem II.8 of the Arithmetica asks how a given square number is split into two other squares; in other words, for a given rational number k, find rational numbers u and v such that k 2 = u 2 + v 2. Diophantus shows how to solve this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5 ).
A first-order rational difference equation is a nonlinear difference equation of the form + = + +. When ,,, and the initial condition are real numbers, this difference equation is called a Riccati difference equation.
Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.
Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing by r 2 in the other equations.
Algebraic geometry is the study of the solutions in an algebraically closed field of multivariate polynomial equations. Two equations are equivalent if they have the same set of solutions. In particular the equation = is equivalent to =. It follows that the study of algebraic equations is equivalent to the study of polynomials.
Polynomial equations of degree two can be solved with the quadratic formula, which has been known since antiquity. Similarly the cubic formula for degree three, and the quartic formula for degree four, were found during the 16th century. At that time a fundamental problem was whether equations of higher degree could be solved in a similar way.