When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .

  3. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    When the task is to find the solution that is the best under some criterion, this is an optimization problem. Solving an optimization problem is generally not referred to as "equation solving", as, generally, solving methods start from a particular solution for finding a better solution, and repeating the process until finding eventually the ...

  4. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Problem II.8 of the Arithmetica asks how a given square number is split into two other squares; in other words, for a given rational number k, find rational numbers u and v such that k 2 = u 2 + v 2. Diophantus shows how to solve this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5 ).

  5. Rational difference equation - Wikipedia

    en.wikipedia.org/wiki/Rational_difference_equation

    A first-order rational difference equation is a nonlinear difference equation of the form + = + +. When ,,, and the initial condition are real numbers, this difference equation is called a Riccati difference equation.

  6. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 22 = 0 and replacing by r 2 in the other equations.

  8. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    Algebraic geometry is the study of the solutions in an algebraically closed field of multivariate polynomial equations. Two equations are equivalent if they have the same set of solutions. In particular the equation = is equivalent to =. It follows that the study of algebraic equations is equivalent to the study of polynomials.

  9. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Polynomial equations of degree two can be solved with the quadratic formula, which has been known since antiquity. Similarly the cubic formula for degree three, and the quartic formula for degree four, were found during the 16th century. At that time a fundamental problem was whether equations of higher degree could be solved in a similar way.