Search results
Results From The WOW.Com Content Network
The relative permittivity of a medium is related to its electric susceptibility, χ e, as ε r (ω) = 1 + χ e. In anisotropic media (such as non cubic crystals) the relative permittivity is a second rank tensor. The relative permittivity of a material for a frequency of zero is known as its static relative permittivity.
Relative permittivities of some materials at room temperature under 1 kHz; Material ... Template: Relative permittivity table. 2 languages ...
Relative permittivity = electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum) Specific gravity: SG (same as Relative density) Stefan number: Ste = Josef Stefan
The relative permittivity of a material can be found by a variety of static electrical measurements. The complex permittivity is evaluated over a wide range of frequencies by using different variants of dielectric spectroscopy , covering nearly 21 orders of magnitude from 10 −6 to 10 15 hertz .
The refractive index of electromagnetic radiation equals =, where ε r is the material's relative permittivity, and μ r is its relative permeability. [ 47 ] : 229 The refractive index is used for optics in Fresnel equations and Snell's law ; while the relative permittivity and permeability are used in Maxwell's equations and electronics.
In electromagnetism, the Clausius–Mossotti relation, named for O. F. Mossotti and Rudolf Clausius, expresses the dielectric constant (relative permittivity, ε r) of a material in terms of the atomic polarizability, α, of the material's constituent atoms and/or molecules, or a homogeneous mixture thereof.
In terms of relative permeability, the magnetic susceptibility is χ m = μ r − 1. {\displaystyle \chi _{m}=\mu _{r}-1.} The number χ m is a dimensionless quantity , sometimes called volumetric or bulk susceptibility, to distinguish it from χ p ( magnetic mass or specific susceptibility) and χ M ( molar or molar mass susceptibility).
The real (blue solid line) and imaginary (orange dashed line) components of relative permittivity are plotted for model with parameters = 3.2 eV, = 4.5 eV, = 100 eV, = 1 eV, and = 3.5. The Tauc–Lorentz model is a mathematical formula for the frequency dependence of the complex-valued relative permittivity , sometimes referred to as the ...