When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    The extended number line is often useful to describe the behavior of a function when either the argument or the function value gets "infinitely large" in some sense. For example, consider the function f {\displaystyle f} defined by

  3. Positive and negative parts - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative_parts

    The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.

  4. Proper convex function - Wikipedia

    en.wikipedia.org/wiki/Proper_convex_function

    In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...

  5. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  6. Effective domain - Wikipedia

    en.wikipedia.org/wiki/Effective_domain

    In convex analysis, a branch of mathematics, the effective domain extends of the domain of a function defined for functions that take values in the extended real number line [,] = {}. In convex analysis and variational analysis , a point at which some given extended real -valued function is minimized is typically sought, where such a point is ...

  7. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    For ease of understanding, we provide the framework for real-valued Hilbert spaces. The theory can be easily extended to spaces of complex-valued functions and hence include the many important examples of reproducing kernel Hilbert spaces that are spaces of analytic functions. [5]

  8. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    The epigraphs of extended real-valued functions play a role in convex analysis that is analogous to the role played by graphs of real-valued function in real analysis. Specifically, the epigraph of an extended real-valued function provides geometric intuition that can be used to help formula or prove conjectures.

  9. Epigraph (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Epigraph_(mathematics)

    Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set ⁡ = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]