Ads
related to: strassen's matrix multiplication with example problems printable
Search results
Results From The WOW.Com Content Network
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity , although the naive algorithm is often better for smaller matrices.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Strassen's algorithm improves on naive matrix multiplication through a divide-and-conquer approach. The key observation is that multiplying two 2 × 2 matrices can be done with only 7 multiplications, instead of the usual 8 (at the expense of 11 additional addition and subtraction operations).
The Schönhage–Strassen algorithm is based on the fast Fourier transform (FFT) method of integer multiplication. This figure demonstrates multiplying 1234 × 5678 = 7006652 using the simple FFT method. Base 10 is used in place of base 2 w for illustrative purposes. Schönhage (on the right) and Strassen (on the left) playing chess in ...
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
The straightforward multiplication of a matrix that is X × Y by a matrix that is Y × Z requires XYZ ordinary multiplications and X(Y − 1)Z ordinary additions. In this context, it is typical to use the number of ordinary multiplications as a measure of the runtime complexity. If A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × ...