Search results
Results From The WOW.Com Content Network
PET scan using fluorine-18. Fluorine may interact with biological systems in the form of fluorine-containing compounds. Though elemental fluorine (F 2) is very rare in everyday life, fluorine-containing compounds such as fluorite occur naturally as minerals. Naturally occurring organofluorine compounds are extremely rare. Man-made fluoride ...
Its effects in humans start at concentrations lower than hydrogen cyanide's 50 ppm [256] and are similar to those of chlorine: [257] significant irritation of the eyes and respiratory system as well as liver and kidney damage occur above 25 ppm, which is the immediately dangerous to life and health value for fluorine. [258]
The fluorine–fluorine bond of the difluorine molecule is relatively weak when compared to the bonds of heavier dihalogen molecules. The bond energy is significantly weaker than those of Cl 2 or Br 2 molecules and similar to the easily cleaved oxygen–oxygen bonds of peroxides or nitrogen–nitrogen bonds of hydrazines. [8]
Fluorine, in the form of fluoride, is considered to be a micronutrient for human health, necessary to prevent dental cavities, and to promote healthy bone growth. [28] The tea plant (Camellia sinensis L.) is a known accumulator of fluorine compounds, released upon forming infusions such as the common beverage. The fluorine compounds decompose ...
A few elements have been found to have a pharmacologic function in humans (and possibly in other living things as well; the phenomenon has not been widely studied). In these, a normally nonessential element can treat a disease (often a micronutrient deficiency). An example is fluorine, which reduces the effects of iron deficiency in rats.
Researchers discovered the element in a galaxy that is so far away its light has taken more than 12 billion years to reach Earth.
The labeled [18 F]FDG compound has a relatively short shelf life which is dominated by the physical decay of fluorine-18 with a half-life of 109.8 minutes, or slightly less than two hours. Still, this half life is sufficiently long to allow shipping the compound to remote PET scanning facilities, in contrast to other medical radioisotopes like ...
Radiofluorination is the process by which a radioactive isotope of fluorine is attached to a molecule and is preferably performed by nucleophilic substitution using nitro or halogens as leaving groups. Fluorine-18 is the most common isotope used for this procedure. This is due to its 97% positron emission and relatively long 109.8 min half-life ...