Search results
Results From The WOW.Com Content Network
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
In mathematics, the set of positive real numbers, > = {>}, is the subset of those real numbers that are greater than zero. The non-negative real numbers, = {}, also include zero.
On the other hand, every real number greater than or equal to zero is certainly an upper bound on this set. Hence, is the least upper bound of the negative reals, so the supremum is 0. This set has a supremum but no greatest element. However, the definition of maximal and minimal elements is more general. In particular, a set can have many ...
In a totally ordered set the maximal element and the greatest element coincide; and it is also called maximum; in the case of function values it is also called the absolute maximum, to avoid confusion with a local maximum. [1] The dual terms are minimum and absolute minimum. Together they are called the absolute extrema. Similar conclusions ...
Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
Is there an efficient way to find the global maximum/minimum? Take for example the sine integral. It has an infinite number of local maxima and minima. So how can one decide which one is the global maximum/minimum? --Abdull 17:04, 17 May 2007 (UTC) Not in the absolutely general case.
Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]