Search results
Results From The WOW.Com Content Network
The int type is required to be at least as wide as short and at most as wide as long, and is typically the width of the word size on the processor of the machine (i.e. on a 32-bit machine it is often 32 bits wide; on 64-bit machines it is sometimes 64 bits wide).
Byte, octet, minimum size of char in C99( see limits.h CHAR_BIT) −128 to +127 0 to 255 2 bytes 16 bits x86 word, minimum size of short and int in C −32,768 to +32,767 0 to 65,535 4 bytes 32 bits x86 double word, minimum size of long in C, actual size of int for most modern C compilers, [8] pointer for IA-32-compatible processors
Some programming languages (or compilers for them) provide a built-in (primitive) or library decimal data type to represent non-repeating decimal fractions like 0.3 and −1.17 without rounding, and to do arithmetic on them. Examples are the decimal.Decimal or num7.Num type of Python, and analogous types provided by other languages.
For an ANSI/ISO compliant compiler, the minimum requirements for the specified ranges, that is, −(2 63 −1) [11] to 2 63 −1 for signed and 0 to 2 64 −1 for unsigned, [12] must be fulfilled; however, extending this range is permitted. [17] [18] This can be an issue when exchanging code and data between platforms, or doing direct hardware ...
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
For example, in the Python programming language, int represents an arbitrary-precision integer which has the traditional numeric operations such as addition, subtraction, and multiplication. However, in the Java programming language , the type int represents the set of 32-bit integers ranging in value from −2,147,483,648 to 2,147,483,647 ...
In the IEEE 754 standard, the 64-bit base-2 format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 single precision and, more recently, base-10 representations (decimal floating point).
On some PowerPC systems, [11] long double is implemented as a double-double arithmetic, where a long double value is regarded as the exact sum of two double-precision values, giving at least a 106-bit precision; with such a format, the long double type does not conform to the IEEE floating-point standard.