When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean tiling - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_tiling

    A Pythagorean tiling Street Musicians at the Door, Jacob Ochtervelt, 1665.As observed by Nelsen [1] the floor tiles in this painting are set in the Pythagorean tiling. A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides.

  3. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 3 6 ; 3 6 ; 3 4 .6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling.

  4. List of Euclidean uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_euclidean_uniform...

    For example 4.8.8 means one square and two octagons on a vertex. These 11 uniform tilings have 32 different uniform colorings. A uniform coloring allows identical sided polygons at a vertex to be colored differently, while still maintaining vertex-uniformity and transformational congruence between vertices.

  5. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    The familiar "brick wall" tiling is not edge-to-edge because the long side of each rectangular brick is shared with two bordering bricks. [18] A normal tiling is a tessellation for which every tile is topologically equivalent to a disk, the intersection of any two tiles is a connected set or the empty set, and all tiles are uniformly bounded ...

  6. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    There are different notations for expressing these uniform solutions, Wythoff symbol, Coxeter diagram, and Coxeter's t-notation. Simple tiles are generated by Möbius triangles with whole numbers p,q,r, while Schwarz triangles allow rational numbers p,q,r and allow star polygon faces, and have overlapping elements.

  7. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    A number of the semiregular tilings are repeated from different symmetry constructors. A prismatic symmetry group, (2 2 2 2), is represented by two sets of parallel mirrors, which in general can make a rectangular fundamental domain. It generates no new tilings. A further prismatic symmetry group, (∞ 2 2), has an infinite fundamental domain.

  8. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.

  9. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    Hexagonal tiling is the densest way to arrange circles in two dimensions. The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter.