Search results
Results From The WOW.Com Content Network
Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in a steady flow, the sum of all forms of energy in a fluid is the same at all points that are free of viscous forces. This requires that the sum of kinetic energy, potential energy and internal energy remains constant.
Defining equation SI units Dimension Flow velocity vector field u = (,) m s −1 [L][T] −1: Velocity pseudovector ... U = internal energy per unit mass of fluid;
The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions. The conservation of momentum equations for the compressible, viscous flow case is called the Navier–Stokes equations. [2] Conservation of energy
Also, temperature variations for compressible flows are usually significant and thus the energy equation is important. Curious phenomena can occur with compressible flows. For simplicity, the gas is assumed to be an ideal gas. The gas flow is isentropic. The gas flow is constant. The gas flow is along a straight line from gas inlet to exhaust ...
is the flow velocity. and is the heat flux vector. Because it expresses conservation of total energy, this is sometimes referred to as the energy balance equation of continuous media. The first law is used to derive the non-conservation form of the Navier–Stokes equations. [3]
Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...