Search results
Results From The WOW.Com Content Network
1937 diagram of engine cooling entirely by thermosiphon circulation. Some early cars, motor vehicles, and engine-powered farm and industrial equipment used thermosiphon circulation to move cooling water between their cylinder block and radiator. This method of water circulation depends on keeping enough cool air moving past the radiator to ...
Water is inexpensive, non-toxic, and available over most of the earth's surface.Liquid cooling offers higher thermal conductivity than air cooling. Water has unusually high specific heat capacity among commonly available liquids at room temperature and atmospheric pressure allowing efficient heat transfer over distance with low rates of mass transfer.
Cornell University's Lake Source Cooling System uses Cayuga Lake as a heat sink to operate the central chilled water system for its campus and to also provide cooling to the Ithaca City School District. [3] The system has operated since the summer of 2000 and was built at a cost of $55–60 million. It cools a 14,500 ton (51 megawatt) load. The ...
Hopper cooling is a simple form of water cooling used for small stationary engines. The defining feature of hopper cooling, amongst other water-cooled engines, is that there is no radiator . Cooling water is heated by the engine and evaporates from the surface of the hopper as steam .
In the adjacent diagram, water pumped from the tower basin is the cooling water routed through the process coolers and condensers in an industrial facility. The cool water absorbs heat from the hot process streams which need to be cooled or condensed, and the absorbed heat warms the circulating water (C).
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
The cooling towers of a large chilled water system. As part of a chilled water system, the condenser water absorbs heat from the refrigerant in the condenser barrel of the water chiller and is then sent via return lines to a cooling tower, which is a heat exchange device used to transfer waste heat to the atmosphere.
Alternatively, a liquid-to-liquid or similar heat exchanger may be used instead. The high-temperature system transfers heat to a conventional condenser that carries the entire heat output of the system and may be passive, fan, or water-cooled. This is an auto-cascade process with two different refrigerants.