Search results
Results From The WOW.Com Content Network
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.
Thus, the gravitational acceleration at this radius is [14] = (). where G is the gravitational constant and M(r) is the total mass enclosed within radius r. If the Earth had a constant density ρ, the mass would be M(r) = (4/3)πρr 3 and the dependence of gravity on depth would be
The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13] The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 ...
The calculation takes every particle's x ... where dm is the mass at the point r, g is the acceleration of gravity, and ^ is a unit vector defining the ...
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
The Second Law of Motion, the law of acceleration, states that F = ma, meaning that a force F acting on a body is equal to the mass m of the body times its acceleration a. The Third Law of Motion, the law of reciprocal actions, states that all forces occur in pairs, and these two forces are equal in magnitude and opposite in direction. Newton's ...
The ideal Atwood machine consists of two objects of mass m 1 and m 2, connected by an inextensible massless string over an ideal massless pulley. [1] Both masses experience uniform acceleration. When m 1 = m 2, the machine is in neutral equilibrium regardless of the position of the weights.