Ads
related to: algebraic geometry timeline
Search results
Results From The WOW.Com Content Network
1135 – Sharafeddin Tusi followed al-Khayyam's application of algebra to geometry, and wrote a treatise on cubic equations which "represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." [2]
Al-Khwarizmi is often considered the "father of algebra", for founding algebra as an independent discipline and for introducing the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation) which was what he ...
Yuri Manin (1937–2023) – algebraic geometry and diophantine geometry; Vladimir Arnold (1937–2010) – algebraic geometry; Ernest Vinberg (1937–2020) J. H. Conway (1937–2020) – sphere packing, recreational geometry; Robin Hartshorne (1938–) – geometry, algebraic geometry; Phillip Griffiths (1938–) – algebraic geometry ...
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
The rigorous deductive methods of geometry found in Euclid's Elements of Geometry were relearned, and further development of geometry in the styles of both Euclid (Euclidean geometry) and Khayyam (algebraic geometry) continued, resulting in an abundance of new theorems and concepts, many of them very profound and elegant.
Abstract geometry, including algebraic geometry, categorical noncommutative geometry, etc. Quantization related to category theory, in particular categorical quantization; Categorical physics relevant for mathematics. In this article, and in category theory in general, ∞ = ω.
Real algebra is the part of algebra which is relevant to real algebraic (and semialgebraic) geometry. It is mostly concerned with the study of ordered fields and ordered rings (in particular real closed fields ) and their applications to the study of positive polynomials and sums-of-squares of polynomials .
This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves. Early history 3rd ...