Ads
related to: work thermodynamics definition chemistry examplesstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the ...
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation.
In thermodynamics, the Gibbs free energy or Helmholtz free energy is essentially the energy of a chemical reaction "free" or available to do external work. Historically, the "free energy" is a more advanced and accurate replacement for the thermochemistry term “affinity” used by chemists of olden days to describe the “force” that caused chemical reactions.
As an example, mechanical work and heat are process functions because they describe quantitatively the transition between equilibrium states of a thermodynamic system. Path functions depend on the path taken to reach one state from another. Different routes give different quantities. Examples of path functions include work, heat and arc length.
For example, when a machine (not a part of the system) lifts a system upwards, some energy is transferred from the machine to the system. The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's gravitational potential energy. Work ...
For this topic, very often the bodies considered have smooth spatial inhomogeneities, so that spatial gradients, for example a temperature gradient, are well enough defined. Thus the description of non-equilibrium thermodynamic systems is a field theory, more complicated than the theory of equilibrium thermodynamics.
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress. Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a P-V diagram.