Search results
Results From The WOW.Com Content Network
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. [9] The decrease of the speed of sound with height is referred to as a negative sound speed gradient.
Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.
For many applications of sonar the speed of sound can be assumed to be an average speed of 1500 meters per second. However, the speed of sound in seawater can vary from 1440 to 1570 meters per second. [1] An example of a sound velocity probe – the Teledyne Odom Digibar Pro
Water pressure also affects sound propagation: higher pressure increases the sound speed, which causes the sound waves to refract away from the area of higher sound speed. The mathematical model of refraction is called Snell's law. If the sound source is deep and the conditions are right, propagation may occur in the 'deep sound channel'. This ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
AMODE, the "Acoustic Mid-Ocean Dynamics Experiment" (1990-1), was designed to study ocean dynamics in an area away from the Gulf Stream, and SYNOP (1988-9) was designed to synoptically measure aspects of the Gulf Stream. The colors show a snapshot of sound speed at 300 metres (980 ft) depth derived from a high-resolution numerical ocean model ...