Search results
Results From The WOW.Com Content Network
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
In numerical analysis, order of accuracy quantifies the rate of convergence of a numerical approximation of a differential equation to the exact solution. Consider u {\displaystyle u} , the exact solution to a differential equation in an appropriate normed space ( V , | | | | ) {\displaystyle (V,||\ ||)} .
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
With the implied accuracy of the data points of ±0.5, the zeroth order approximation could at best yield the result for y of ~3.7 ± 2.0 in the interval of x from −0.5 to 2.5, considering the standard deviation. If the data points are reported as = [,,],
This little-known but serious issue can be overcome by using an accuracy measure based on the logarithm of the accuracy ratio (the ratio of the predicted to actual value), given by (). This approach leads to superior statistical properties and also leads to predictions which can be interpreted in terms of the geometric mean.
If not known and calculated from data, an accuracy comparison test could be made using "Two-proportion z-test, pooled for Ho: p1 = p2". Not used very much is the complementary statistic, the fraction incorrect (FiC): FC + FiC = 1, or (FP + FN)/(TP + TN + FP + FN) – this is the sum of the antidiagonal , divided by the total population.
An open source implementation for calculating finite difference coefficients of arbitrary derivates and accuracy order in one dimension is available. [2]