When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    To qualify as a probability distribution, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events that contain no common results, e.g., the events {1,6}, {3}, and {2,4} are all mutually exclusive), the probability that any of these events occurs is given by the sum of the ...

  3. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...

  4. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...

  5. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    If events A 1, A 2, ..., are mutually exclusive and exhaustive, i.e., one of them is certain to occur but no two can occur together, we can determine the proportionality constant by using the fact that their probabilities must add up to one. For instance, for a given event A, the event A itself and its complement ¬A are

  6. Probability measure - Wikipedia

    en.wikipedia.org/wiki/Probability_measure

    Intuitively, the additivity property says that the probability assigned to the union of two disjoint (mutually exclusive) events by the measure should be the sum of the probabilities of the events; for example, the value assigned to the outcome "1 or 2" in a throw of a dice should be the sum of the values assigned to the outcomes "1" and "2".

  7. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability is [1] a theorem that states, in its discrete case, if {: =,,, …} is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event () = ()

  8. Probability axioms - Wikipedia

    en.wikipedia.org/wiki/Probability_axioms

    This is called the addition law of probability, or the sum rule. That is, the probability that an event in A or B will happen is the sum of the probability of an event in A and the probability of an event in B, minus the probability of an event that is in both A and B. The proof of this is as follows: Firstly,

  9. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.