When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    Among the Platonic solids, either the dodecahedron or the icosahedron may be seen as the best approximation to the sphere. The icosahedron has the largest number of faces and the largest dihedral angle, it hugs its inscribed sphere the most tightly, and its surface area to volume ratio is closest to that of a sphere of the same size (i.e ...

  3. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    Three interlocking golden rectangles inscribed in a con­vex regular icosahedron. The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.

  4. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    The regular icosahedron has many relations with other Platonic solids, one of them is the regular dodecahedron as its dual polyhedron and has the historical background on the comparison mensuration. It also has many relations with other polytopes .

  5. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    Why these objects were made, or how their creators gained the inspiration for them, is a mystery. There is doubt regarding the mathematical interpretation of these objects, as many have non-platonic forms, and perhaps only one has been found to be a true icosahedron, as opposed to a reinterpretation of the icosahedron dual, the dodecahedron. [3]

  6. Gyroelongated bipyramid - Wikipedia

    en.wikipedia.org/wiki/Gyroelongated_bipyramid

    Three members of the set can be deltahedra, that is, constructed entirely of equilateral triangles: the gyroelongated square bipyramid, a Johnson solid; the icosahedron, a Platonic solid; and the gyroelongated triangular bipyramid if it is made with equilateral triangles, but because it has coplanar faces is not strictly convex.

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The other two Kepler–Poinsot polyhedra (the great stellated dodecahedron and great icosahedron) do not have regular hyperbolic tiling analogues. If m is even, depending on how we choose to define { m /2}, we can either obtain degenerate double covers of other tilings or compound tilings.

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    A common and somewhat naive definition of a polyhedron is that it is a solid whose boundary can be covered by finitely many planes [4] [5] or that it is a solid formed as the union of finitely many convex polyhedra. [6]

  9. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    The Catalan solids, the bipyramids, and the trapezohedra are all isohedral. They are the duals of the (isogonal) Archimedean solids, prisms, and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex-, edge-, and face-transitive (i.e. isogonal, isotoxal, and isohedral).