Search results
Results From The WOW.Com Content Network
The great icosahedron can be constructed as a uniform snub, with different colored faces and only tetrahedral symmetry: .This construction can be called a retrosnub tetrahedron or retrosnub tetratetrahedron, [1] similar to the snub tetrahedron symmetry of the icosahedron, as a partial faceting of the truncated octahedron (or omnitruncated tetrahedron): .
The great icosahedron is one of the four regular star Kepler-Poinsot polyhedra. Its Schläfli symbol is {3, 5 / 2 }. Like the convex form, it also has 20 equilateral triangle faces, but its vertex figure is a pentagram rather than a pentagon, leading to geometrically intersecting faces.
It can be seen as a polyhedron compound of a great icosahedron and great stellated dodecahedron. It is one of five compounds constructed from a Platonic solid or Kepler-Poinsot solid, and its dual. It is a stellation of the great icosidodecahedron. It has icosahedral symmetry (I h) and it has the same vertex arrangement as a great rhombic ...
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
Icosahedron: Small triambic icosahedron: Icosahedron: Great triambic icosahedron: Icosahedron: Compound of five cubes: Rhombic triacontahedron: Compound of great icosahedron and great stellated dodecahedron: Icosidodecahedron: Compound of great icosahedron and great stellated dodecahedron: Great icosidodecahedron: Compound of dodecahedron and ...
Three snub polyhedra: the great icosahedron | 2 3/2 3/2, the small retrosnub icosicosidodecahedron | 3/2 3/2 5/2, and the great retrosnub icosidodecahedron | 2 3/2 5/3. Here the vertex figures have been distorted into pentagrams or hexagrams rather than pentagons or hexagons, pushing all the snub triangles through the centre and yielding ...
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
This polyhedron is the truncation of the great icosahedron: . The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.