When.com Web Search

  1. Ads

    related to: sound wave effect on hearing

Search results

  1. Results From The WOW.Com Content Network
  2. Microwave auditory effect - Wikipedia

    en.wikipedia.org/wiki/Microwave_auditory_effect

    The microwave auditory effect, also known as the microwave hearing effect or the Frey effect, consists of the human perception of sounds induced by pulsed or modulated radio frequencies. The perceived sounds are generated directly inside the human head without the need of any receiving electronic device.

  3. Auditory system - Wikipedia

    en.wikipedia.org/wiki/Auditory_system

    Sound waves are reflected and attenuated when they hit the auricle, and these changes provide additional information that will help the brain determine the sound direction. The sound waves enter the auditory canal, a deceptively simple tube. The ear canal amplifies sounds that are between 3 and 12 kHz. [1]

  4. Hypersonic effect - Wikipedia

    en.wikipedia.org/wiki/Hypersonic_effect

    It is a common understanding in psychoacoustics that the ear cannot respond to sounds at such high frequency via an air-conduction pathway, so one question that this research raised was: does the hypersonic effect occur via the "ordinary" route of sound travelling through the air passage in the ear, or in some other way?

  5. Psychoacoustics - Wikipedia

    en.wikipedia.org/wiki/Psychoacoustics

    Hearing is not a purely mechanical phenomenon of wave propagation, but is also a sensory and perceptual event. When a person hears something, that something arrives at the ear as a mechanical sound wave traveling through the air, but within the ear it is transformed into neural action potentials. These nerve pulses then travel to the brain ...

  6. Hearing - Wikipedia

    en.wikipedia.org/wiki/Hearing

    The eardrum is an airtight membrane, and when sound waves arrive there, they cause it to vibrate following the waveform of the sound. Cerumen (ear wax) is produced by ceruminous and sebaceous glands in the skin of the human ear canal, protecting the ear canal and tympanic membrane from physical damage and microbial invasion.

  7. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges, allowing some to even hear ultrasounds

  8. Precedence effect - Wikipedia

    en.wikipedia.org/wiki/Precedence_effect

    The precedence effect or law of the first wavefront is a binaural psychoacoustical effect concerning sound reflection and the perception of echoes.When two versions of the same sound presented are separated by a sufficiently short time delay (below the listener's echo threshold), listeners perceive a single auditory event; its perceived spatial location is dominated by the location of the ...

  9. Infrasound - Wikipedia

    en.wikipedia.org/wiki/Infrasound

    20 Hz is considered the normal low-frequency limit of human hearing. When pure sine waves are reproduced under ideal conditions and at very high volume, a human listener will be able to identify tones as low as 12 Hz. [38] Below 10 Hz it is possible to perceive the single cycles of the sound, along with a sensation of pressure at the eardrums.