Search results
Results From The WOW.Com Content Network
Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra , 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents .
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
For example, the quotient can be defined to equal zero; it can be defined to equal a new explicit point at infinity, sometimes denoted by the infinity symbol; or it can be defined to result in signed infinity, with positive or negative sign depending on the sign of the dividend. In these number systems division by zero is no longer a special ...
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Whether this expression is left undefined, or is defined to equal , depends on the field of application and may vary between authors. For more, see the article Zero to the power of zero . Note that 0 ∞ {\displaystyle 0^{\infty }} and other expressions involving infinity are not indeterminate forms .
In arithmetic, and therefore algebra, division by zero is undefined. [7] Use of a division by zero in an arithmetical calculation or proof, can produce absurd or meaningless results. Assuming that division by zero exists, can produce inconsistent logical results, such as the following fallacious "proof" that one is equal to two [8]:
A number is called "even" if it is an integer multiple of 2. As an example, the reason that 10 is even is that it equals 5 × 2. In the same way, zero is an integer multiple of 2, namely 0 × 2, so zero is even. [2] It is also possible to explain why zero is even without referring to formal definitions. [3]
The function = {< has a limit at every non-zero x-coordinate (the limit equals 1 for negative x and equals 2 for positive x). The limit at x = 0 does not exist (the left-hand limit equals 1, whereas the right-hand limit equals 2).