Search results
Results From The WOW.Com Content Network
[1] Relative bearing refers to the angle between the craft's forward direction and the location of another object. For example, an object relative bearing of 0 degrees would be immediately in front; an object relative bearing 180 degrees would be behind. [2] Bearings can be measured in mils, points, or degrees.
Angular separation between points A and B as seen from O. To derive the equation that describes the angular separation of two points located on the surface of a sphere as seen from the center of the sphere, we use the example of two astronomical objects and observed from the Earth.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
If a navigator begins at P 1 = (φ 1,λ 1) and plans to travel the great circle to a point at point P 2 = (φ 2,λ 2) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle
The pole of this local polar coordinate system is the vertical axis (pole O) of the total stations. The polar coordinates (r,f) with the pole are transformed using surveying software on a data collector to the Cartesian coordinates (x,y) of the known points. The coordinates for the position of the total station are then calculated. [5]
Calculating the distance between geographical coordinates is based on some level of abstraction; it does not provide an exact distance, which is unattainable if one attempted to account for every irregularity in the surface of the Earth. [1] Common abstractions for the surface between two geographic points are: Flat surface; Spherical surface;
The two dimensional Manhattan distance has "circles" i.e. level sets in the form of squares, with sides of length √ 2 r, oriented at an angle of π/4 (45°) to the coordinate axes, so the planar Chebyshev distance can be viewed as equivalent by rotation and scaling to (i.e. a linear transformation of) the planar Manhattan distance.