Ad
related to: examples of machine learning problems and solutions
Search results
Results From The WOW.Com Content Network
A genetic algorithm (GA) is a search algorithm and heuristic technique that mimics the process of natural selection, using methods such as mutation and crossover to generate new genotypes in the hope of finding good solutions to a given problem. In machine learning, genetic algorithms were used in the 1980s and 1990s.
The algorithm selection problem is mainly solved with machine learning techniques. By representing the problem instances by numerical features f {\displaystyle f} , algorithm selection can be seen as a multi-class classification problem by learning a mapping f i ↦ A {\displaystyle f_{i}\mapsto {\mathcal {A}}} for a given instance i ...
In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...
Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function). Evolution of the population then takes place after the repeated application of the above operators.
A row of slot machines in Las Vegas. In probability theory and machine learning, the multi-armed bandit problem (sometimes called the K-[1] or N-armed bandit problem [2]) is a problem in which a decision maker iteratively selects one of multiple fixed choices (i.e., arms or actions) when the properties of each choice are only partially known at the time of allocation, and may become better ...
Potential solutions include randomly shuffling training examples, by using a numerical optimization algorithm that does not take too large steps when changing the network connections following an example, grouping examples in so-called mini-batches and/or introducing a recursive least squares algorithm for CMAC. [151]
A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper ...
These types of problems can be addressed by predictive analytics using time series techniques (see below). They can also be addressed via machine learning approaches which transform the original time series into a feature vector space, where the learning algorithm finds patterns that have predictive power. [26] [27]