Ads
related to: hydrostatic balance atmosphere temperature control
Search results
Results From The WOW.Com Content Network
The hydrostatic equilibrium pertains to hydrostatics and the principles of equilibrium of fluids. A hydrostatic balance is a particular balance for weighing substances in water. Hydrostatic balance allows the discovery of their specific gravities. This equilibrium is strictly applicable when an ideal fluid is in steady horizontal laminar flow ...
Atmospheric models also differ in how they compute vertical fluid motions; some types of models are thermotropic, [1] barotropic, hydrostatic, and non-hydrostatic. These model types are differentiated by their assumptions about the atmosphere, which must balance computational speed with the model's fidelity to the atmosphere it is simulating.
Assuming an atmosphere that is in hydrostatic balance, the average column virtual temperature contributes the most to the surface pressure. The virtual temperatures of the three F09 storms varied with the Kessler storm having temperatures several degrees warmer than the other storms. The winds are determined by the radial pressure gradients ...
In atmospheric science, the thermal wind is the vector difference between the geostrophic wind at upper altitudes minus that at lower altitudes in the atmosphere. It is the hypothetical vertical wind shear that would exist if the winds obey geostrophic balance in the horizontal, while pressure obeys hydrostatic balance in the vertical.
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium [1] and "the pressure in a fluid or exerted by a fluid on an immersed body". [ 2 ] It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics , the study of fluids in motion.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
As an example, pressure at any height can be diagnosed by applying the hydrostatic equation to the predicted surface pressure and the predicted values of temperature between the surface and the height of interest. Pressure is used to compute the pressure gradient force in the time-dependent equation for the winds.
In the case of atmospheres, the pressure-gradient force is balanced by the gravitational force, maintaining hydrostatic equilibrium. In Earth's atmosphere, for example, air pressure decreases at altitudes above Earth's surface, thus providing a pressure-gradient force which counteracts the force of gravity on the atmosphere.