When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angular displacement - Wikipedia

    en.wikipedia.org/wiki/Angular_displacement

    Figure 2: A rotation represented by an Euler axis and angle. In three dimensions, angular displacement is an entity with a direction and a magnitude. The direction specifies the axis of rotation, which always exists by virtue of the Euler's rotation theorem ; the magnitude specifies the rotation in radians about that axis (using the right-hand ...

  3. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  4. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.. In the simplest case of circular motion at radius , with position given by the angular displacement () from the x-axis, the orbital angular velocity is the rate of change of angle with respect to time: =.

  5. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    If the force is perpendicular to the displacement vector r, the moment arm will be equal to the distance to the centre, and torque will be a maximum for the given force. The equation for the magnitude of a torque, arising from a perpendicular force: = ().

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]

  8. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17615°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in ...

  9. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).