Search results
Results From The WOW.Com Content Network
Thus, there are three significant figures in this example. The following types of digits are not considered significant: [2] Leading zeros. For instance, 013 kg has two significant figures—1 and 3—while the leading zero is insignificant since it does not impact the mass indication; 013 kg is equivalent to 13 kg, rendering the zero unnecessary.
Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis.
For example, on a calculator, if the internal representation of a displayed value is not rounded to the same precision as the display, then the result of further operations will depend on the hidden digits and appear unpredictable to the user' ... The problem is not limited to Excel, e.g. LibreOffice calc acts similarly.
For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
Fisher's exact test is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
Because pairs of numbers that are aligned on the logarithmic scales form constant ratios, no matter how the scales are offset, slide rules can be used to generate equivalent fractions that solve proportion and percent problems. For example, setting 7.5 on one scale over 10 on the other scale, the user can see that at the same time 1.5 is over 2 ...
"The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not." [11] In Table 1 of the same work, he gave the more precise value 1.959964. [12] In 1970, the value truncated to 20 decimal places was calculated to be