When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola. Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are ...

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A point on no tangent line is said to be an interior point (or inner point) of the conic, while a point on two tangent lines is an exterior point (or outer point). All the conic sections share a reflection property that can be stated as: All mirrors in the shape of a non-degenerate conic section reflect light coming from or going toward one ...

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    The vertices of a central conic can be determined by calculating the intersections of the conic and its axes — in other words, by solving the system consisting of the quadratic conic equation and the linear equation for alternately one or the other of the axes. Two or no vertices are obtained for each axis, since, in the case of the hyperbola ...

  5. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...

  6. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    A,C: vertices of the ellipse and foci of the hyperbola E,F: foci of the ellipse and vertices of the hyperbola Focal conics: two parabolas A: vertex of the red parabola and focus of the blue parabola F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either

  7. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    In geometry, two conic sections are called confocal if they have the same foci. Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles).

  8. Conjugate hyperbola - Wikipedia

    en.wikipedia.org/wiki/Conjugate_hyperbola

    A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex. Each cone has an axis, and the plane section is parallel to the plane formed by the axes. Using analytic geometry, the hyperbolas satisfy the symmetric equations

  9. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...