Search results
Results From The WOW.Com Content Network
Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator = (),
The definition of exponentiation can be extended in a natural way (preserving the multiplication rule) to define for any positive real base and any real number exponent . More involved definitions allow complex base and exponent, as well as certain types of matrices as base or exponent.
of the infinitely iterated exponential converges for the bases () The function | () | on the complex plane, showing the real-valued infinitely iterated exponential function (black curve) Tetration can be extended to infinite heights; i.e., for certain a and n values in n a {\displaystyle {}^{n}a} , there exists a well defined result for ...
Taking the nth root of a number is the inverse operation of exponentiation, [1] and can be written as a fractional exponent: = /. For a positive real number x, denotes the positive square root of x and denotes the positive real n th root.
Exponentiation is an arithmetic operation in which a number, known as the base, is raised to the power of another number, known as the exponent. The result of this operation is called the power. Exponentiation is sometimes expressed using the symbol ^ but the more common way is to write the exponent in superscript right after the
An irrational fraction is one that contains the variable under a fractional exponent. [12] An example of an irrational fraction is / / /. The process of transforming an irrational fraction to a rational fraction is known as rationalization.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
Moreover, as the derivative of f(x) evaluates to ln(b) b x by the properties of the exponential function, the chain rule implies that the derivative of log b x is given by [35] [37] = . That is, the slope of the tangent touching the graph of the base- b logarithm at the point ( x , log b ( x )) equals 1/( x ln( b )) .