Ad
related to: focal length and image distance calculator driving time
Search results
Results From The WOW.Com Content Network
For a thin lens in air, the focal length is the distance from the center of the lens to the principal foci (or focal points) of the lens.For a converging lens (for example a convex lens), the focal length is positive and is the distance at which a beam of collimated light will be focused to a single spot.
The distance between an object and a lens. Real object Virtual object s i: The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Converging lens Diverging lens y o: The height of an object from the optical axis. Erect object Inverted object y i: The height of an image from the optical axis Erect image ...
The depth of field, and thus hyperfocal distance, changes with the focal length as well as the f-stop. This lens is set to the hyperfocal distance for f /32 at a focal length of 100 mm. In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus.
The original application called for placing the chart at a distance 26 times the focal length of the imaging lens used. The bars above and to the left are in sequence, separated by approximately the square root of two (12, 17, 24, etc.), while the bars below and to the left have the same separation but a different starting point (14, 20, 28, etc.)
For a given lens with the focal length f, the minimum distance between an object and the real image is 4f (S 1 = S 2 = 2f). This is derived by letting L = S 1 + S 2 , expressing S 2 in terms of S 1 by the lens equation (or expressing S 1 in terms of S 2 ), and equating the derivative of L with respect to S 1 (or S 2 ) to zero.
Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
where t is the total depth of focus, N is the lens f-number, c is the circle of confusion, v is the image distance, and f is the lens focal length. In most cases, the image distance (not to be confused with subject distance) is not easily determined; the depth of focus can also be given in terms of magnification m: = (+).
The effective focal length is nearly equal to the stated focal length of the lens (F), except in macro photography where the lens-to-object distance is comparable to the focal length. In this case, the absolute transverse magnification factor ( m ) ( m = S 2 / S 1 {\displaystyle m=S_{2}/S_{1}} ) must be taken into account: