When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval.

  3. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    With the factor 2 replaced by approximately 2.59, the Freedman–Diaconis rule asymptotically matches Scott's Rule for data sampled from a normal distribution. Another approach is to use Sturges's rule : use a bin width so that there are about 1 + log 2 ⁡ n {\displaystyle 1+\log _{2}n} non-empty bins, however this approach is not recommended ...

  4. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.

  5. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Skewness is a descriptive statistic that can be used in conjunction with the histogram and the normal quantile plot to characterize the data or distribution. Skewness indicates the direction and relative magnitude of a distribution's deviation from the normal distribution.

  6. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [4]

  7. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  8. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization is a method in image processing of contrast adjustment using the image ... In terms of statistics, the value of each output image pixel ...

  9. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    Many test statistics, scores, and estimators encountered in practice contain sums of certain random variables in them, and even more estimators can be represented as sums of random variables through the use of influence functions. The central limit theorem implies that those statistical parameters will have asymptotically normal distributions.