Ads
related to: distributive property of algebraic expression worksheet
Search results
Results From The WOW.Com Content Network
Examples of structures with two operations that are each distributive over the other are Boolean algebras such as the algebra of sets or the switching algebra. Multiplying sums can be put into words as follows: When a sum is multiplied by a sum, multiply each summand of a sum with each summand of the other sum (keeping track of signs) then add ...
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9.
A non-associative algebra [1] (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative.That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative.
The grid method uses the distributive property twice to expand the product, once for the horizontal factor, and once for the vertical factor. Historically the grid calculation (tweaked slightly) was the basis of a method called lattice multiplication , which was the standard method of multiple-digit multiplication developed in medieval Arabic ...
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial can be factored as follows: