Search results
Results From The WOW.Com Content Network
Stirling permutations, permutations of the multiset of numbers 1, 1, 2, 2, ..., k, k in which each pair of equal numbers is separated only by larger numbers, where k = n + 1 / 2 . The two copies of k must be adjacent; removing them from the permutation leaves a permutation in which the maximum element is k − 1 , with n positions into ...
In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.
Use divide and conquer to compute the product of the primes whose exponents are odd; Divide all of the exponents by two (rounding down to an integer), recursively compute the product of the prime powers with these smaller exponents, and square the result; Multiply together the results of the two previous steps
In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
2.4 Modified-factorial denominators. 2.5 Binomial coefficients. 2.6 Harmonic numbers. 3 Binomial coefficients. 4 Trigonometric functions. 5 Rational functions.
This experiment is an example of a 2 2 (or 2×2) factorial experiment, so named because it considers two levels (the base) for each of two factors (the power or superscript), or #levels #factors, producing 2 2 =4 factorial points. Cube plot for factorial design . Designs can involve many independent variables.
[1] [2] [3] One way of stating the approximation involves the logarithm of the factorial: (!) = + (), where the big O notation means that, for all sufficiently large values of , the difference between (!