Search results
Results From The WOW.Com Content Network
In signal processing and machine learning, discrete calculus allows for appropriate definitions of operators (e.g., convolution), level set optimization and other key functions for neural network analysis on graph structures. [3] Discrete calculus can be used in conjunction with other mathematical disciplines.
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
Alexandrov's uniqueness theorem (discrete geometry) Alperin–Brauer–Gorenstein theorem (finite groups) Alspach's theorem (graph theory) Amitsur–Levitzki theorem (linear algebra) Analyst's traveling salesman theorem (discrete mathematics) Analytic Fredholm theorem (functional analysis) Anderson's theorem (real analysis)
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear operators acting upon these spaces and respecting these structures in a suitable sense.
It is important to note that the sign of the discrete Laplace-Beltrami operator is conventionally opposite the sign of the ordinary Laplace operator. The above cotangent formula can be derived using many different methods among which are piecewise linear finite elements, finite volumes, and discrete exterior calculus [2] (PDF download: ).
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
Discrete exterior calculus — discrete form of the exterior calculus of differential geometry; Modal analysis using FEM — solution of eigenvalue problems to find natural vibrations; Céa's lemma — solution in the finite-element space is an almost best approximation in that space of the true solution