Search results
Results From The WOW.Com Content Network
Wireless LAN (WLAN) channels are frequently accessed using IEEE 802.11 protocols. The 802.11 standard provides several radio frequency bands for use in Wi-Fi communications, each divided into a multitude of channels numbered at 5 MHz spacing (except in the 45/60 GHz band, where they are 0.54/1.08/2.16 GHz apart) between the centre frequency of the channel.
Subsequently in 2016, Wi-Fi Alliance introduced the Wave 2 certification, which includes additional features like MU-MIMO (downlink only), 160 MHz channel width support, support for more 5 GHz channels, and four spatial streams (with four antennas; compared to three in Wave 1 and 802.11n, and eight in IEEE's 802.11ax specification). [17]
Wave 2 products include additional features like MU-MIMO, 160 MHz channel width support, support for more 5 GHz channels, and four spatial streams (with four antennas; compared to three in Wave 1 and 802.11n, and eight in IEEE's 802.11ax specification). [55] [56]
Contiguous and non-contiguous 320/160+160 MHz and 240/160+80 MHz bandwidth, Frame formats with improved forward-compatibility, Enhanced resource allocation in OFDMA, Optimized channel sounding that requires less airtime, Implicit channel sounding, More flexible preamble puncturing scheme, Support of direct links, managed by an access point.
By doing so, an 80 MHz channel can be split into multiple Resource Units, so that multiple clients receive different types of data over the same spectrum, simultaneously. To support OFDMA, 802.11ax needs four times as many subcarriers as 802.11ac. Specifically, for 20, 40, 80, and 160 MHz channels, the 802.11ac standard has, respectively, 64 ...
A 484-tone RU consists of 468 data subcarriers and 16 pilot subcarriers, A 996-tone RU consists of 980 data subcarriers and 16 pilot subcarriers and A 2x996-tone RU consists of two 996-tone RUs, each located at each half of the PPDU bandwidth for 160 MHz and 80+80 MHz HE PPDU formats. [1]
Channel width (20, 40, 80, and 160 MHz) Secondary channel offset; Security mode (WEP, WPA, WPA2) Support for Wi-Fi Protected Setup (WPS) Supported basic, min and max data rates; Advertised 802.11 Information Elements; Graphical visualization of channel allocation, signal strength or Signal-to-noise ratio (SNR) Different sorting and filtering ...
IEEE 802.11n is an amendment to IEEE 802.11-2007 as amended by IEEE 802.11k-2008, IEEE 802.11r-2008, IEEE 802.11y-2008, and IEEE 802.11w-2009, and builds on previous 802.11 standards by adding a multiple-input multiple-output (MIMO) system and 40 MHz channels to the PHY (physical layer) and frame aggregation to the MAC layer.