When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isotopes of iodine - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_iodine

    Iodine-135 is an isotope of iodine with a half-life of 6.6 hours. It is an important isotope from the viewpoint of nuclear reactor physics . It is produced in relatively large amounts as a fission product , and decays to xenon-135 , which is a nuclear poison with the largest known thermal neutron cross section , which is a cause of multiple ...

  3. Iodine pit - Wikipedia

    en.wikipedia.org/wiki/Iodine_pit

    The iodine pit, also called the iodine hole or xenon pit, is a temporary disabling of a nuclear reactor due to buildup of short-lived nuclear poisons in the reactor core. The main isotope responsible is 135 Xe, mainly produced by natural decay of 135 I. 135 I is a weak neutron absorber, while 135 Xe is the strongest

  4. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    carbon-20: 16 francium-199: 16 protactinium-214: 17 sodium-31: 17 thorium-210: 17 boron-13: 17.33 radium-220: 17.9 neon-28: 18.9 livermorium-291: 19 radon-213: 19.5 actinium-205: 20 astatine-196m1: 20 rutherfordium-270: 20 francium-219: 20 meitnerium-275: 20 boron-12: 20.2 radon-197m: 21 rutherfordium-260: 21 astatine-193m1: 21 californium-238: ...

  5. Fission product yield - Wikipedia

    en.wikipedia.org/wiki/Fission_product_yield

    Neutron capture (29 barns) slowly converts stable 133 Cs to 134 Cs, which itself is low-yield because beta decay stops at 134 Xe; can be further converted (140 barns) to 135 Cs. 6.3333%: Iodine, xenon: 135 I → 135 Xe: 6.57 h: Most important neutron poison; neutron capture converts 10–50% of 135 Xe to 136 Xe; remainder decays (9.14h) to 135 ...

  6. Neutron poison - Wikipedia

    en.wikipedia.org/wiki/Neutron_poison

    Because 95% of the xenon-135 production is from iodine-135 decay, which has a 6- to 7-hour half-life, the production of xenon-135 remains constant; at this point, the xenon-135 concentration reaches a minimum. The concentration then increases to the equilibrium for the new power level in the same time, roughly 40 to 50 hours.

  7. Xenon-135 - Wikipedia

    en.wikipedia.org/wiki/Xenon-135

    Iodine-135 is a fission product of uranium with a yield of about 6% (counting also the 135 I produced almost immediately from decay of fission-produced tellurium-135). [6] This 135 I decays with a 6.57 hour half-life to 135 Xe. Thus, in an operating nuclear reactor, 135 Xe is being continuously produced.

  8. Iodine Clock Reaction [Video] - AOL

    www.aol.com/news/iodine-clock-reaction-155728609...

    This experiment is about much more than just watching Iodine solution turn royal blue from reddish brown. Try this experiment at home with the kids to introduce them to the basic tenet of physics ...

  9. Isotopes of samarium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_samarium

    This contrasts with xenon-135, which accumulates from the beta decay of iodine-135 (a short lived fission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-called xenon pit.