When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isotopes of iodine - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_iodine

    Iodine-135 is an isotope of iodine with a half-life of 6.6 hours. It is an important isotope from the viewpoint of nuclear reactor physics . It is produced in relatively large amounts as a fission product , and decays to xenon-135 , which is a nuclear poison with the largest known thermal neutron cross section , which is a cause of multiple ...

  3. Iodine pit - Wikipedia

    en.wikipedia.org/wiki/Iodine_pit

    135 I undergoes beta decay with half-life of 6.57 hours to 135 Xe. The yield of 135 Xe for uranium fission is 6.3%; about 95% of 135 Xe originates from decay of 135 I. 135 Xe is the most powerful known neutron absorber , with a cross section for thermal neutrons of 2.6×10 6 barns , [ 1 ] so it acts as a " poison " that can slow or stop the ...

  4. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    carbon-20: 16 francium-199: 16 protactinium-214: 17 sodium-31: 17 thorium-210: 17 boron-13: 17.33 radium-220: 17.9 neon-28: 18.9 livermorium-291: 19 radon-213: 19.5 actinium-205: 20 astatine-196m1: 20 rutherfordium-270: 20 francium-219: 20 meitnerium-275: 20 boron-12: 20.2 radon-197m: 21 rutherfordium-260: 21 astatine-193m1: 21 californium-238: ...

  5. Fission product yield - Wikipedia

    en.wikipedia.org/wiki/Fission_product_yield

    Neutron capture (29 barns) slowly converts stable 133 Cs to 134 Cs, which itself is low-yield because beta decay stops at 134 Xe; can be further converted (140 barns) to 135 Cs. 6.3333%: Iodine, xenon: 135 I → 135 Xe: 6.57 h: Most important neutron poison; neutron capture converts 10–50% of 135 Xe to 136 Xe; remainder decays (9.14h) to 135 ...

  6. Neutron poison - Wikipedia

    en.wikipedia.org/wiki/Neutron_poison

    Because 95% of the xenon-135 production is from iodine-135 decay, which has a 6- to 7-hour half-life, the production of xenon-135 remains constant; at this point, the xenon-135 concentration reaches a minimum. The concentration then increases to the equilibrium for the new power level in the same time, roughly 40 to 50 hours.

  7. Xenon-135 - Wikipedia

    en.wikipedia.org/wiki/Xenon-135

    Iodine-135 is a fission product of uranium with a yield of about 6% (counting also the 135 I produced almost immediately from decay of fission-produced tellurium-135). [6] This 135 I decays with a 6.57 hour half-life to 135 Xe. Thus, in an operating nuclear reactor, 135 Xe is being continuously produced.

  8. Category:Isotopes of iodine - Wikipedia

    en.wikipedia.org/wiki/Category:Isotopes_of_iodine

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  9. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is: