Search results
Results From The WOW.Com Content Network
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Scalene may refer to: . A scalene triangle, one in which all sides and angles are not the same.; A scalene ellipsoid, one in which the lengths of all three semi-principal axes are different
The pedal circle of the point P and its isogonal conjugate P* are the same.. The pedal circle is defined as the circumcircle of the pedal triangle. Note that the pedal circle is not defined for points lying on the circumcircle of the triangle.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
A right-angled triangle and its hypotenuse. In geometry, a hypotenuse is the side of a right triangle opposite the right angle. [1] It is the longest side of any such triangle; the two other shorter sides of such a triangle are called catheti or legs.
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order m = 1, 2, 3, ... is a number trapezoid whose entries (,) give the number of strings consisting of n X-s and k Y-s such that in every initial segment of the string the number of Y-s does not exceed the number of X-s by m or more. [6]