When.com Web Search

  1. Ads

    related to: bi vectors in geometry ppt powerpoint template

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    The non-zero vectors in Cl n (R) or R n are associated with points in the projective space so vectors that differ only by a scale factor, so their exterior product is zero, map to the same point. Non-zero simple bivectors in ⋀ 2 R n represent lines in RP n −1 , with bivectors differing only by a (positive or negative) scale factor ...

  3. Category:Geometry templates - Wikipedia

    en.wikipedia.org/wiki/Category:Geometry_templates

    If the template has a separate documentation page (usually called "Template:template name/doc"), add [[Category:Geometry templates]] to the <includeonly> section at the bottom of that page.

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The derivatives that appear in Maxwell's equations are vectors and electromagnetic fields are represented by the Faraday bivector F. This formulation is as general as that of differential forms for manifolds with a metric tensor, as then these are naturally identified with r-forms and there are corresponding operations. Maxwell's equations ...

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Historically, vectors were introduced in geometry and physics (typically in mechanics) for quantities that have both a magnitude and a direction, such as displacements, forces and velocity. Such quantities are represented by geometric vectors in the same way as distances , masses and time are represented by real numbers .

  6. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)

  7. Template:Geometry - Wikipedia

    en.wikipedia.org/wiki/Template:Geometry

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more